Long-term sea-level projections with two versions of a global climate model of intermediate complexity and the corresponding changes in the Earth's gravity field

نویسندگان

  • Oleg Makarynskyy
  • Michael Kuhn
  • Will E. Featherstone
چکیده

Approximate estimations of future climate change can be produced by implementing numerical global climate models. In this study, versions 2.6 and 2.7 of the University of Victoria Earth System Climate Model (ESCM) were employed. Compared to other climatic projections, the novelty of this study consists in a significant extension of the projection period to the time-scale of 4200 years, and in comparisons of the results obtained with two sequential versions 2.6 and 2.7 of ESCM. Version 2.6 of ESCM couples the atmospheric, oceanic and ice processes. Version 2.7 of ESCM accounts for solar and ice-sheet forcing, as well as coupling land–vegetation–atmosphere–ocean carbon, and allows inclusion of ocean biology and dynamic vegetation modules. Our comparison exhibits essential quantitative and, moreover, qualitative differences in the parameters under consideration, which are surface air temperature, sea-ice and snow volumes, and surface pressure in a column of water averaged globally. The observed differences are attributed to the biological blocks added to ESCM version 2.7, changed numerics and explicit ice-sheet forcing. Furthermore, the non-steric sea-level change has been used to model corresponding gravity field changes (here in terms of geoid height) by evaluating Newton’s volume integral and study the differences between the two software versions under consideration. In line with the model results, the estimated geoid height changes also exhibit a significant difference between the experiments’ outcomes. r 2007 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Long Term Trend of Spatio-Temporal changes of Sea Surface Temperature in Oman Sea

Considering the vast application of sea surface temperature in climatic and oceanic investigations, this parameter was studied in Oman Sea from 1986 to 2015. The SST was surveyed using trend analysis and Global and local Moran’s I spatial autocorrelation. In trend analysis, the Mann-Kendall test was used to determine the trend of SST changes and the Sen's Estimator method was used to examine th...

متن کامل

Wave Hindcast Study of the Caspian Sea

The significant effect of waves on coastal and marine activities urges the precise identification of wave characteristics using field measurements, theoretical studies, physical modeling or numerical simulations. In order to study thoroughly the wave climate in the Caspian Sea, a wave modeling and hindcast project was performed by Iranian National Center for Oceanography. In this study, one of ...

متن کامل

Evaluation of the performance of the CMIP5 General Circulation Models in predicting the Indian Ocean Monsoon precipitation over south Sistan and Baluchestan, using the past hydrological changes in the region

1-Introduction Climate change refers to any significant change in the existing mean climatic conditions within a certain time period (Jana and Majumder, 2010; Giorgi, 2006). Earth's climate change through history has happened (Nakicenovic et al., 2000; Bytnerowicz et al., 2007). 2-Materials and methods In this study, daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) tempera...

متن کامل

بررسی تغییرات سرعت باد در نزدیکی منطقه چابهار در دریای عمان در اثر تغییر اقلیم

Climate change caused the changes in earth surface temperature, precipitation, sea surface level, wind speeds, wave heights, coastlines, etc. Estimation of the effect of climate change is of great importance in long-term studies of such parameters. In this study, the effect of climate change on average wind speed near Chabahar, Gulf of Oman is assessed until the year 2100. For this purpose, win...

متن کامل

Caspian Sea south coast future climate change estimations through regional climate model

. Caspian Sea south coast future climate change estimations through regional climate model many physical of the procedures related to climate change are not perceived thoroughly. Scientific knowledge used to show those procedures completely, and to analyses forecasts is so complex, since most current studies about climate physical model have been done through semi experimental and random model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Geosciences

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2007